Estimation of VaR Using Copula and Extreme Value Theory
نویسندگان
چکیده
منابع مشابه
high volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولNonparametric estimation of an extreme-value copula in arbitrary dimensions
Inference on an extreme-value copula usually proceeds via its Pickands dependence function, which is a convex function on the unit simplex satisfying certain inequality constraints. In the setting of an iid random sample from a multivariate distribution with known margins and unknown extreme-value copula, an extension of the Capéraà–Fougères–Genest estimator was introduced by D. Zhang, M. T. We...
متن کاملValue at Risk Estimation Using Extreme Value Theory
A common assumption in quantitative financial risk modelling is the distributional assumption of normality in the asset’s return series, which makes modelling easy but proves to be inefficient if the data exhibit extreme tails. When dealing with extreme financial events like the Global Financial Crisis of 2007-2008 while quantifying extreme market risk, Extreme Value Theory (EVT) proves to be a...
متن کاملGeneralized Extreme Value Distribution and Extreme Economic Value at Risk (EE-VaR) October 2007 Generalized Extreme Value Distribution and Extreme Economic Value at Risk (EE-VaR)
Ait-Sahalia and Lo (2000) and Panigirtzoglou and Skiadopoulos (2004) have argued that Economic VaR (E-VaR), calculated under the option market implied risk neutral density is a more relevant measure of risk than historically based VaR. As industry practice requires VaR at high confidence level of 99%, we propose Extreme Economic Value at Risk (EE-VaR) as a new risk measure, based on the General...
متن کاملPredicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, where particularly f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2006
ISSN: 1556-5068
DOI: 10.2139/ssrn.908259